Ligações mistas de aço e concreto em situação de incêndio: uma revisão sistemática da literatura
Contenido principal del artículo
Resumen
As ligações mistas de aço e concreto caracterizam-se pelo fato de a laje de concreto participar da transmissão de esforços de uma viga mista para um pilar ou para outra viga mista no vão adjacente. Apesar de existirem ligações mistas com comportamento já conhecido e consolidado, ainda há dúvidas acerca do mecanismo de funcionamento das ligações mistas em situação de incêndio, nas quais as elevadas temperaturas alteram significativamente a distribuição de resistência e rigidez, tanto nas ligações quanto nos elementos associados a elas. Nesse cenário, há uma escassez de trabalhos, a nível mundial, avaliando o comportamento de ligações mistas de aço e concreto em situação de incêndio. O objetivo deste trabalho foi conduzir uma análise bibliométrica e posterior revisão sistemática da literatura acerca das pesquisas sobre ligações mistas de aço e concreto em situação de incêndio, a fim de delinear o estado da arte sobre o tema e contribuir para o avanço das pesquisas na área a partir da identificação das principais lacunas do conhecimento existentes. Dentre as lacunas identificadas, destacam-se as recomendações para a realização de investigações acerca do comportamento de ligações mistas de aço e concreto considerando sua relação com a estrutura globalmente além do seu comportamento isolado.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigo às normas da publicação.
Os conteúdos da Revista Brasileira Multidisciplinar – ReBraM estão licenciados sob uma Licença Creative Commons 4.0 by.
Qualquer usuário tem direito de:
- Compartilhar — copiar, baixar, imprimir ou redistribuir o material em qualquer suporte ou formato.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os seguintes termos:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de maneira alguma que sugira ao licenciante a apoiar você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.
Autores concedem à ReBraM os direitos autorais, com o trabalho simultaneamente licenciado sob a Licença Creative Commons 4.0 by. , que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Citas
American Society for Testing and Materials (ASTM). ASTM E119: Standard test methods for fire tests of building construction and materials. Philadelphia, 2000.
International Organization for Standardization (ISO), I. O. for S. Fire-resistance tests — Elements of building construction — Part 1: General requirements. Geneva, 1999.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 8800: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro: ABNT, 2008.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 14323: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio. Rio de Janeiro: ABNT, 2013.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 14432: Exigências de resistência ao fogo de elementos construtivos de edificações - Procedimento. Rio de Janeiro: ABNT, 2001.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 15200: Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro: ABNT, 2012.
AGARWAL, A.; SELDEN, K.; VARMA, A. Stability Behavior of Steel Building Structures in Fire Conditions: Role of Composite Floor System with Shear-Tab Connections. Journal of Structural Fire Engineering, [s. l.], v. 5, n. 2, p. 77–96, 2014. Available at: https://doi.org/10.1260/2040-2317.5.2.77
AL-JABRI, K. S. et al. Modeling of composite beam–column flexible endplate joints at elevated temperature. Composite Structures, [s. l.], v. 143, p. 180–188, 2016. Available at: https://doi.org/10.1016/j.compstruct.2016.01.069
ARIA, M.; CUCCURULLO, C. bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, [s. l.], v. 11, n. 4, p. 959–975, 2017. Available at: https://doi.org/10.1016/j.joi.2017.08.007
BAHR, O. On the fire performance of unbraced composite frames. Journal of Structural Fire Engineering, [s. l.], v. 9, n. 4, p. 300–318, 2018. Available at: https://doi.org/10.1108/JSFE-03-2017-0030
BAILEY, C. G. The behaviour of asymmetric slim floor steel beams in fire. Journal of Constructional Steel Research, [s. l.], v. 50, n. 3, p. 235–257, 1999. Available at: https://doi.org/10.1016/S0143-974X(98)00247-8
CHIEW, S. P.; ZHAO, M. S.; LEE, C. K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions. Journal of Constructional Steel Research, [s. l.], v. 98, p. 12–19, 2014. Available at: https://doi.org/10.1016/j.jcsr.2014.02.003
DAI, X. H.; WANG, Y. C.; BAILEY, C. G. Effects of partial fire protection on temperature developments in steel joints protected by intumescent coating. Fire Safety Journal, [s. l.], v. 44, n. 3, p. 376–386, 2009. Available at: https://doi.org/10.1016/j.firesaf.2008.08.005
DEMONCEAU, J.-F. et al. Behaviour of single-sided composite joints at room temperature and in case of fire after an earthquake. International Journal of Steel Structures, [s. l.], v. 9, n. 4, p. 329–342, 2009. Available at: https://doi.org/10.1007/BF03249506
DEMONCEAU, Jean-François; CIUTINA, A. Characterisation of Beam-to-column Steel-concrete Composite Joints Beyond Current Eurocode Provisions. Structures, [s. l.], v. 21, p. 167–175, 2019. Available at: https://doi.org/10.1016/j.istruc.2019.01.014
DONG, Y. L.; ZHU, E. C.; PRASAD, K. Thermal and structural response of two-storey two-bay composite steel frames under furnace loading. Fire Safety Journal, [s. l.], v. 44, n. 4, p. 439–450, 2009. Available at: https://doi.org/10.1016/j.firesaf.2008.09.005
DONG, Y.; PRASAD, K. Experimental Study on the Behavior of Full-Scale Composite Steel Frames under Furnace Loading. Journal of Structural Engineering, [s. l.], v. 135, n. 10, p. 1278–1289, 2009a. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2009)135:10(1278)
DONG, Y.; PRASAD, K. Thermal and structural response of a two-story, two bay composite steel frame under fire loading. Proceedings of the Combustion Institute, [s. l.], v. 32, n. 2, p. 2543–2550, 2009b. Available at: https://doi.org/10.1016/j.proci.2008.05.007
DRURY, M. M.; KORDOSKY, A. N.; QUIEL, S. E. Structural fire resistance of partially restrained, partially composite floor beams, II: Modeling. Journal of Constructional Steel Research, v. 167, p. 105946, 2020. Available at: https://doi.org/10.1016/j.jcsr.2020.105946
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). EN 1994–2–2: Design of composite steel and concrete structures. General rules and rules for bridges. Brussels, Bélgica: [s. n.], 2005.
FAKURY, R. H. et al. Design of semi-continuous composite steel-concrete beams at the fire limit state. Journal of Constructional Steel Research, v. 61, n. 8, p. 1094–1107, 2005. Available at: https://doi.org/10.1016/j.jcsr.2005.02.003
FIRMO, J. P.; CORREIA, J. R.; BISBY, L. A. Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review. Composites Part B: Engineering, v. 80, p. 198–216, 2015. Available at: https://doi.org/10.1016/j.compositesb.2015.05.045
FISCHER, E. C.; VARMA, A. H. Fire behavior of composite beams with simple connections: Benchmarking of numerical models. Journal of Constructional Steel Research, v. 111, p. 112–125, 2015. Available at: https://doi.org/10.1016/j.jcsr.2015.03.013
FISCHER, E. C.; VARMA, A. H. Fire resilience of composite beams with simple connections: Parametric studies and design. Journal of Constructional Steel Research, v. 128, p. 119–135, 2017. Available at: https://doi.org/10.1016/j.jcsr.2016.08.004
FOSTER, S. et al. Thermal and structural behaviour of a full-scale composite building subject to a severe compartment fire. Fire Safety Journal, v. 42, n. 3, p. 183–199, 2007. Available at: https://doi.org/10.1016/j.firesaf.2006.07.002
GARDNER, L.; BADDOO, N. R. Fire testing and design of stainless steel structures. Journal of Constructional Steel Research, v. 62, n. 6, p. 532–543, 2006. Available at: https://doi.org/10.1016/j.jcsr.2005.09.009
GERNAY, T.; FRANSSEN, J.-M. A plastic-damage model for concrete in fire: Applications in structural fire engineering. Fire Safety Journal, v. 71, p. 268–278, 2015. Available at: https://doi.org/10.1016/j.firesaf.2014.11.028
HAJJAR, M. A.; HANTOUCHE, E. G. Predicting the Demand of Shear Tab Connections with Composite Beams in Fire. International Journal of Steel Structures, v. 20, n. 3, p. 817–832, 2020. Available at: https://doi.org/10.1007/s13296-020-00325-5
HAJJAR, M.; HANTOUCHE, E.; EL GHOR, A. Shear tab connection with composite beam subjected to transient-state fire temperatures. Journal of Structural Fire Engineering, v. 10, n. 4, p. 411–434, 2019. Available at: https://doi.org/10.1108/JSFE-11-2018-0037
HAN, L.-H.; ZHENG, Y.-Q.; TAO, Z. Fire performance of steel-reinforced concrete beam–column joints. Magazine of Concrete Research, v. 61, n. 7, p. 499–518, 2009. Available at: https://doi.org/10.1680/macr.2008.61.7.499
HAN, Lin-Hai; XU, C.-Y.; TAO, Z. Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research. Journal of Constructional Steel Research, v. 152, p. 117–131, 2019. Available at: https://doi.org/10.1016/j.jcsr.2018.02.038
HAREMZA, C. et al. Composite joints under M-N at elevated temperatures. Journal of Constructional Steel Research, v. 124, p. 173–186, 2016. Available at: https://doi.org/10.1016/j.jcsr.2016.05.012
HAREMZA, C.; SANTIAGO, A.; SIMÕES DA SILVA, L. Experimental behaviour of heated composite steel–concrete joints subject to variable bending moments and axial forces. Engineering Structures, v. 51, p. 150–165, 2013. Available at: https://doi.org/10.1016/j.engstruct.2013.01.016
JÁNA, T. et al. Temperatures and thermal boundary conditions in reverse channel connections to concrete filled steel sections during standard and natural fire tests. Fire Safety Journal, v. 78, p. 55–70, 2015. Available at: https://doi.org/10.1016/j.firesaf.2015.08.002
KELLER, W. J.; PESSIKI, S. Cyclic Load Tests of SFRM-Insulated Steel Gravity Frame Beam-Column Connection Assemblies. Journal of Structural Engineering, v. 141, n. 10, p. 04015005, 2015. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001237
KODUR, V. K. R. et al. Modeling the response of composite beam–slab assemblies exposed to fire. Journal of Constructional Steel Research, v. 80, p. 163–173, 2013. Available at: https://doi.org/10.1016/j.jcsr.2012.09.005
KODUR, V. K. R.; PHAN, L. Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal, v. 42, n. 6–7, p. 482–488, 2007. Available at: https://doi.org/10.1016/j.firesaf.2006.10.006
LAMONT, S.; USMANI, A. . Possible ‘panel instability’ in composite deck floor systems under fire. Journal of Constructional Steel Research, v. 59, n. 11, p. 1397–1433, 2003. Available at: https://doi.org/10.1016/S0143-974X(03)00083-X
LIN, S.; HUANG, Z.; FAN, M. The effects of protected beams and their connections on the fire resistance of composite buildings. Fire Safety Journal, v. 78, p. 31–43, 2015. Available at: https://doi.org/10.1016/j.firesaf.2015.08.003
LIU, T. C. . Three-dimensional modelling of steel/concrete composite connection behaviour in fire. Journal of Constructional Steel Research, v. 46, n. 1–3, p. 319–320, 1998. Available at: https://doi.org/10.1016/S0143-974X(98)80038-2
LIU, T. C. H. Moment-Rotation-Temperature Characteristics of Steel/Composite Connections. Journal of Structural Engineering, v. 125, n. 10, p. 1188–1197, 1999. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1188)
LIU, Y.; HUANG, S.-S.; BURGESS, I. Fire performance of axially ductile connections in composite construction. Fire Safety Journal, v. 121, p. 103311, 2021. Available at: https://doi.org/10.1016/j.firesaf.2021.103311
LYU, J. et al. Fire resistance of integral composite beams with superposed slabs. Structural Concrete, v. 21, n. 6, p. 2481–2493, 2020. Available at: https://doi.org/10.1002/suco.202000115
MARTINEZ, J.; JEFFERS, A. E. Analysis of restrained composite beams exposed to fire. Engineering Structures, v. 234, p. 111740, 2021. Available at: https://doi.org/10.1016/j.engstruct.2020.111740
PIGNATTA E SILVA, V. Determination of the steel fire protection material thickness by an analytical process—a simple derivation. Engineering Structures, v. 27, n. 14, p. 2036–2043, 2005. Available at: https://doi.org/10.1016/j.engstruct.2005.05.018
PUCINOTTI, R. et al. Seismic-induced fire resistance of composite welded beam-to-column joints with concrete-filled tubes. Fire Safety Journal, v. 46, n. 6, p. 335–347, 2011. Available at: https://doi.org/10.1016/j.firesaf.2011.05.003
PUCINOTTI, R.; BURSI, O. S.; DEMONCEAU, J. F. Post-earthquake fire and seismic performance of welded steel–concrete composite beam-to-column joints. Journal of Constructional Steel Research, v. 67, n. 9, p. 1358–1375, 2011. Available at: https://doi.org/10.1016/j.jcsr.2011.03.006
PUCINOTTI, Raffaele et al. Tests and model calibration of high-strength steel tubular beam-to-column and column-base composite joints for moment-resisting structures. Earthquake Engineering & Structural Dynamics, v. 44, n. 9, p. 1471–1493, 2015. Available at: https://doi.org/10.1002/eqe.2547
RANZI, G.; BRADFORD, M. A. Composite beams with both longitudinal and transverse partial interaction subjected to elevated temperatures. Engineering Structures, v. 29, n. 10, p. 2737–2750, 2007. Available at: https://doi.org/10.1016/j.engstruct.2007.01.022
ROMERO, M. L. et al. Fire behavior of axially loaded slender high strength concrete-filled tubular columns. Journal of Constructional Steel Research, v. 67, n. 12, p. 1953–1965, 2011. Available at: https://doi.org/10.1016/j.jcsr.2011.06.012
SANTIAGO, A. et al. Experimental investigation of the behaviour of a steel sub-frame under a natural fire. Steel and Composite Structures, v. 8, n. 3, p. 243–264, 2008. Available at: https://doi.org/10.12989/scs.2008.8.3.243
SELAMET, S.; BOLUKBAS, C. Fire resilience of shear connections in a composite floor: Numerical investigation. Fire Safety Journal, v. 81, p. 97–108, 2016. Available at: https://doi.org/10.1016/j.firesaf.2016.02.003
SELDEN, K. L.; FISCHER, E. C.; VARMA, A. H. Experimental Investigation of Composite Beams with Shear Connections Subjected to Fire Loading. Journal of Structural Engineering, v. 142, n. 2, p. 04015118, 2016. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001381
SONG, T.-Y. et al. Fire performance of blind bolted composite beam to column joints. Journal of Constructional Steel Research, v. 132, p. 29–42, 2017. Available at: https://doi.org/10.1016/j.jcsr.2017.01.011
VALENTE, J. C.; NEVES, I. C. Fire resistance of steel columns with elastically restrained axial elongation and bending. Journal of Constructional Steel Research, v. 52, n. 3, p. 319–331, 1999. Available at: https://doi.org/10.1016/S0143-974X(99)00033-4
WALD, F. et al. Experimental behaviour of a steel structure under natural fire. Fire Safety Journal, v. 41, n. 7, p. 509–522, 2006. Available at: https://doi.org/10.1016/j.firesaf.2006.05.006
WANG, J. et al. Temperature analysis of extended end plate joints to square CFST columns in fire. Journal of Structural Fire Engineering, v. 7, n. 4, p. 306–315, 2016. Available at: https://doi.org/10.1108/JSFE-12-2016-021
WELLMAN, E. I. et al. Experimental Evaluation of Thin Composite Floor Assemblies under Fire Loading. Journal of Structural Engineering, v. 137, n. 9, p. 1002–1016, 2011. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000451
YANG, Y.-F.; FU, F. Fire resistance of steel beam to square CFST column composite joints using RC slabs: Experiments and numerical studies. Fire Safety Journal, v. 104, p. 90–108, 2019. Available at: https://doi.org/10.1016/j.firesaf.2019.01.009
YE, Z. et al. Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire. Steel and Composite Structures, v. 30, n. 4, p. 351–364, 2019. Available at: https://doi.org/10.12989/scs.2019.30.4.351
YU, M.; ZHA, X.; YE, J. The influence of joints and composite floor slabs on effective tying of steel structures in preventing progressive collapse. Journal of Constructional Steel Research, v. 66, n. 3, p. 442–451, 2010. Available at: https://doi.org/10.1016/j.jcsr.2009.10.008
YUAN, Z.; TAN, K. H.; TING, S. K. Testing of composite steel top-and-seat-and-web angle joints at ambient and elevated temperatures, Part 1: Ambient tests. Engineering Structures, v. 33, n. 10, p. 2727–2743, 2011. Available at: https://doi.org/10.1016/j.engstruct.2011.04.027