Steel-concrete composite connections in a fire condition: a review
Main Article Content
Abstract
Steel-concrete composite connections are characterized by the fact that the concrete slab participates in the transmission of forces from a composite beam to a column or another composite beam in the adjacent span. Although there are composite connections with known and consolidated behavior, there are still doubts about the working mechanism of steel-concrete composite connections in a fire situation, in which high temperatures significantly alter the distribution of resistance and stiffness, both in the connections and in the elements associated with them. In this scenario, there is a shortage of worldwide research evaluating the behavior of steel-concrete composite connections in a fire situation. The objective of this work was to conduct a bibliometric analysis and subsequent systematic literature review about research on steel-concrete composite connections in fire situations, to outline the state of the art on the subject and contribute to the advancement of research in the area from the identification of the main gaps in existing knowledge. Among the identified gaps, the recommendations for conducting investigations on the behavior of steel-concrete composite connections stand out, considering their relationship with the structure globally, in addition to their isolated behavior.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
• The author (s) warrant that the contribution is original and unpublished and that it is not in the process of being evaluated in other journal (s);
• The journal is not responsible for the opinions, ideas and concepts issued in the texts, as they are the sole responsibility of the author (s);
• Publishers have the right to make textual adjustments and to adapt the article to the rules of publication.
Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License, which allows the sharing of work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg publish in institutional repository or as book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of the published work (See The Effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
References
American Society for Testing and Materials (ASTM). ASTM E119: Standard test methods for fire tests of building construction and materials. Philadelphia, 2000.
International Organization for Standardization (ISO), I. O. for S. Fire-resistance tests — Elements of building construction — Part 1: General requirements. Geneva, 1999.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 8800: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro: ABNT, 2008.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 14323: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio. Rio de Janeiro: ABNT, 2013.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 14432: Exigências de resistência ao fogo de elementos construtivos de edificações - Procedimento. Rio de Janeiro: ABNT, 2001.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT NBR 15200: Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro: ABNT, 2012.
AGARWAL, A.; SELDEN, K.; VARMA, A. Stability Behavior of Steel Building Structures in Fire Conditions: Role of Composite Floor System with Shear-Tab Connections. Journal of Structural Fire Engineering, [s. l.], v. 5, n. 2, p. 77–96, 2014. Available at: https://doi.org/10.1260/2040-2317.5.2.77
AL-JABRI, K. S. et al. Modeling of composite beam–column flexible endplate joints at elevated temperature. Composite Structures, [s. l.], v. 143, p. 180–188, 2016. Available at: https://doi.org/10.1016/j.compstruct.2016.01.069
ARIA, M.; CUCCURULLO, C. bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, [s. l.], v. 11, n. 4, p. 959–975, 2017. Available at: https://doi.org/10.1016/j.joi.2017.08.007
BAHR, O. On the fire performance of unbraced composite frames. Journal of Structural Fire Engineering, [s. l.], v. 9, n. 4, p. 300–318, 2018. Available at: https://doi.org/10.1108/JSFE-03-2017-0030
BAILEY, C. G. The behaviour of asymmetric slim floor steel beams in fire. Journal of Constructional Steel Research, [s. l.], v. 50, n. 3, p. 235–257, 1999. Available at: https://doi.org/10.1016/S0143-974X(98)00247-8
CHIEW, S. P.; ZHAO, M. S.; LEE, C. K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions. Journal of Constructional Steel Research, [s. l.], v. 98, p. 12–19, 2014. Available at: https://doi.org/10.1016/j.jcsr.2014.02.003
DAI, X. H.; WANG, Y. C.; BAILEY, C. G. Effects of partial fire protection on temperature developments in steel joints protected by intumescent coating. Fire Safety Journal, [s. l.], v. 44, n. 3, p. 376–386, 2009. Available at: https://doi.org/10.1016/j.firesaf.2008.08.005
DEMONCEAU, J.-F. et al. Behaviour of single-sided composite joints at room temperature and in case of fire after an earthquake. International Journal of Steel Structures, [s. l.], v. 9, n. 4, p. 329–342, 2009. Available at: https://doi.org/10.1007/BF03249506
DEMONCEAU, Jean-François; CIUTINA, A. Characterisation of Beam-to-column Steel-concrete Composite Joints Beyond Current Eurocode Provisions. Structures, [s. l.], v. 21, p. 167–175, 2019. Available at: https://doi.org/10.1016/j.istruc.2019.01.014
DONG, Y. L.; ZHU, E. C.; PRASAD, K. Thermal and structural response of two-storey two-bay composite steel frames under furnace loading. Fire Safety Journal, [s. l.], v. 44, n. 4, p. 439–450, 2009. Available at: https://doi.org/10.1016/j.firesaf.2008.09.005
DONG, Y.; PRASAD, K. Experimental Study on the Behavior of Full-Scale Composite Steel Frames under Furnace Loading. Journal of Structural Engineering, [s. l.], v. 135, n. 10, p. 1278–1289, 2009a. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2009)135:10(1278)
DONG, Y.; PRASAD, K. Thermal and structural response of a two-story, two bay composite steel frame under fire loading. Proceedings of the Combustion Institute, [s. l.], v. 32, n. 2, p. 2543–2550, 2009b. Available at: https://doi.org/10.1016/j.proci.2008.05.007
DRURY, M. M.; KORDOSKY, A. N.; QUIEL, S. E. Structural fire resistance of partially restrained, partially composite floor beams, II: Modeling. Journal of Constructional Steel Research, v. 167, p. 105946, 2020. Available at: https://doi.org/10.1016/j.jcsr.2020.105946
EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). EN 1994–2–2: Design of composite steel and concrete structures. General rules and rules for bridges. Brussels, Bélgica: [s. n.], 2005.
FAKURY, R. H. et al. Design of semi-continuous composite steel-concrete beams at the fire limit state. Journal of Constructional Steel Research, v. 61, n. 8, p. 1094–1107, 2005. Available at: https://doi.org/10.1016/j.jcsr.2005.02.003
FIRMO, J. P.; CORREIA, J. R.; BISBY, L. A. Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review. Composites Part B: Engineering, v. 80, p. 198–216, 2015. Available at: https://doi.org/10.1016/j.compositesb.2015.05.045
FISCHER, E. C.; VARMA, A. H. Fire behavior of composite beams with simple connections: Benchmarking of numerical models. Journal of Constructional Steel Research, v. 111, p. 112–125, 2015. Available at: https://doi.org/10.1016/j.jcsr.2015.03.013
FISCHER, E. C.; VARMA, A. H. Fire resilience of composite beams with simple connections: Parametric studies and design. Journal of Constructional Steel Research, v. 128, p. 119–135, 2017. Available at: https://doi.org/10.1016/j.jcsr.2016.08.004
FOSTER, S. et al. Thermal and structural behaviour of a full-scale composite building subject to a severe compartment fire. Fire Safety Journal, v. 42, n. 3, p. 183–199, 2007. Available at: https://doi.org/10.1016/j.firesaf.2006.07.002
GARDNER, L.; BADDOO, N. R. Fire testing and design of stainless steel structures. Journal of Constructional Steel Research, v. 62, n. 6, p. 532–543, 2006. Available at: https://doi.org/10.1016/j.jcsr.2005.09.009
GERNAY, T.; FRANSSEN, J.-M. A plastic-damage model for concrete in fire: Applications in structural fire engineering. Fire Safety Journal, v. 71, p. 268–278, 2015. Available at: https://doi.org/10.1016/j.firesaf.2014.11.028
HAJJAR, M. A.; HANTOUCHE, E. G. Predicting the Demand of Shear Tab Connections with Composite Beams in Fire. International Journal of Steel Structures, v. 20, n. 3, p. 817–832, 2020. Available at: https://doi.org/10.1007/s13296-020-00325-5
HAJJAR, M.; HANTOUCHE, E.; EL GHOR, A. Shear tab connection with composite beam subjected to transient-state fire temperatures. Journal of Structural Fire Engineering, v. 10, n. 4, p. 411–434, 2019. Available at: https://doi.org/10.1108/JSFE-11-2018-0037
HAN, L.-H.; ZHENG, Y.-Q.; TAO, Z. Fire performance of steel-reinforced concrete beam–column joints. Magazine of Concrete Research, v. 61, n. 7, p. 499–518, 2009. Available at: https://doi.org/10.1680/macr.2008.61.7.499
HAN, Lin-Hai; XU, C.-Y.; TAO, Z. Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research. Journal of Constructional Steel Research, v. 152, p. 117–131, 2019. Available at: https://doi.org/10.1016/j.jcsr.2018.02.038
HAREMZA, C. et al. Composite joints under M-N at elevated temperatures. Journal of Constructional Steel Research, v. 124, p. 173–186, 2016. Available at: https://doi.org/10.1016/j.jcsr.2016.05.012
HAREMZA, C.; SANTIAGO, A.; SIMÕES DA SILVA, L. Experimental behaviour of heated composite steel–concrete joints subject to variable bending moments and axial forces. Engineering Structures, v. 51, p. 150–165, 2013. Available at: https://doi.org/10.1016/j.engstruct.2013.01.016
JÁNA, T. et al. Temperatures and thermal boundary conditions in reverse channel connections to concrete filled steel sections during standard and natural fire tests. Fire Safety Journal, v. 78, p. 55–70, 2015. Available at: https://doi.org/10.1016/j.firesaf.2015.08.002
KELLER, W. J.; PESSIKI, S. Cyclic Load Tests of SFRM-Insulated Steel Gravity Frame Beam-Column Connection Assemblies. Journal of Structural Engineering, v. 141, n. 10, p. 04015005, 2015. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001237
KODUR, V. K. R. et al. Modeling the response of composite beam–slab assemblies exposed to fire. Journal of Constructional Steel Research, v. 80, p. 163–173, 2013. Available at: https://doi.org/10.1016/j.jcsr.2012.09.005
KODUR, V. K. R.; PHAN, L. Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal, v. 42, n. 6–7, p. 482–488, 2007. Available at: https://doi.org/10.1016/j.firesaf.2006.10.006
LAMONT, S.; USMANI, A. . Possible ‘panel instability’ in composite deck floor systems under fire. Journal of Constructional Steel Research, v. 59, n. 11, p. 1397–1433, 2003. Available at: https://doi.org/10.1016/S0143-974X(03)00083-X
LIN, S.; HUANG, Z.; FAN, M. The effects of protected beams and their connections on the fire resistance of composite buildings. Fire Safety Journal, v. 78, p. 31–43, 2015. Available at: https://doi.org/10.1016/j.firesaf.2015.08.003
LIU, T. C. . Three-dimensional modelling of steel/concrete composite connection behaviour in fire. Journal of Constructional Steel Research, v. 46, n. 1–3, p. 319–320, 1998. Available at: https://doi.org/10.1016/S0143-974X(98)80038-2
LIU, T. C. H. Moment-Rotation-Temperature Characteristics of Steel/Composite Connections. Journal of Structural Engineering, v. 125, n. 10, p. 1188–1197, 1999. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1188)
LIU, Y.; HUANG, S.-S.; BURGESS, I. Fire performance of axially ductile connections in composite construction. Fire Safety Journal, v. 121, p. 103311, 2021. Available at: https://doi.org/10.1016/j.firesaf.2021.103311
LYU, J. et al. Fire resistance of integral composite beams with superposed slabs. Structural Concrete, v. 21, n. 6, p. 2481–2493, 2020. Available at: https://doi.org/10.1002/suco.202000115
MARTINEZ, J.; JEFFERS, A. E. Analysis of restrained composite beams exposed to fire. Engineering Structures, v. 234, p. 111740, 2021. Available at: https://doi.org/10.1016/j.engstruct.2020.111740
PIGNATTA E SILVA, V. Determination of the steel fire protection material thickness by an analytical process—a simple derivation. Engineering Structures, v. 27, n. 14, p. 2036–2043, 2005. Available at: https://doi.org/10.1016/j.engstruct.2005.05.018
PUCINOTTI, R. et al. Seismic-induced fire resistance of composite welded beam-to-column joints with concrete-filled tubes. Fire Safety Journal, v. 46, n. 6, p. 335–347, 2011. Available at: https://doi.org/10.1016/j.firesaf.2011.05.003
PUCINOTTI, R.; BURSI, O. S.; DEMONCEAU, J. F. Post-earthquake fire and seismic performance of welded steel–concrete composite beam-to-column joints. Journal of Constructional Steel Research, v. 67, n. 9, p. 1358–1375, 2011. Available at: https://doi.org/10.1016/j.jcsr.2011.03.006
PUCINOTTI, Raffaele et al. Tests and model calibration of high-strength steel tubular beam-to-column and column-base composite joints for moment-resisting structures. Earthquake Engineering & Structural Dynamics, v. 44, n. 9, p. 1471–1493, 2015. Available at: https://doi.org/10.1002/eqe.2547
RANZI, G.; BRADFORD, M. A. Composite beams with both longitudinal and transverse partial interaction subjected to elevated temperatures. Engineering Structures, v. 29, n. 10, p. 2737–2750, 2007. Available at: https://doi.org/10.1016/j.engstruct.2007.01.022
ROMERO, M. L. et al. Fire behavior of axially loaded slender high strength concrete-filled tubular columns. Journal of Constructional Steel Research, v. 67, n. 12, p. 1953–1965, 2011. Available at: https://doi.org/10.1016/j.jcsr.2011.06.012
SANTIAGO, A. et al. Experimental investigation of the behaviour of a steel sub-frame under a natural fire. Steel and Composite Structures, v. 8, n. 3, p. 243–264, 2008. Available at: https://doi.org/10.12989/scs.2008.8.3.243
SELAMET, S.; BOLUKBAS, C. Fire resilience of shear connections in a composite floor: Numerical investigation. Fire Safety Journal, v. 81, p. 97–108, 2016. Available at: https://doi.org/10.1016/j.firesaf.2016.02.003
SELDEN, K. L.; FISCHER, E. C.; VARMA, A. H. Experimental Investigation of Composite Beams with Shear Connections Subjected to Fire Loading. Journal of Structural Engineering, v. 142, n. 2, p. 04015118, 2016. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001381
SONG, T.-Y. et al. Fire performance of blind bolted composite beam to column joints. Journal of Constructional Steel Research, v. 132, p. 29–42, 2017. Available at: https://doi.org/10.1016/j.jcsr.2017.01.011
VALENTE, J. C.; NEVES, I. C. Fire resistance of steel columns with elastically restrained axial elongation and bending. Journal of Constructional Steel Research, v. 52, n. 3, p. 319–331, 1999. Available at: https://doi.org/10.1016/S0143-974X(99)00033-4
WALD, F. et al. Experimental behaviour of a steel structure under natural fire. Fire Safety Journal, v. 41, n. 7, p. 509–522, 2006. Available at: https://doi.org/10.1016/j.firesaf.2006.05.006
WANG, J. et al. Temperature analysis of extended end plate joints to square CFST columns in fire. Journal of Structural Fire Engineering, v. 7, n. 4, p. 306–315, 2016. Available at: https://doi.org/10.1108/JSFE-12-2016-021
WELLMAN, E. I. et al. Experimental Evaluation of Thin Composite Floor Assemblies under Fire Loading. Journal of Structural Engineering, v. 137, n. 9, p. 1002–1016, 2011. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000451
YANG, Y.-F.; FU, F. Fire resistance of steel beam to square CFST column composite joints using RC slabs: Experiments and numerical studies. Fire Safety Journal, v. 104, p. 90–108, 2019. Available at: https://doi.org/10.1016/j.firesaf.2019.01.009
YE, Z. et al. Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire. Steel and Composite Structures, v. 30, n. 4, p. 351–364, 2019. Available at: https://doi.org/10.12989/scs.2019.30.4.351
YU, M.; ZHA, X.; YE, J. The influence of joints and composite floor slabs on effective tying of steel structures in preventing progressive collapse. Journal of Constructional Steel Research, v. 66, n. 3, p. 442–451, 2010. Available at: https://doi.org/10.1016/j.jcsr.2009.10.008
YUAN, Z.; TAN, K. H.; TING, S. K. Testing of composite steel top-and-seat-and-web angle joints at ambient and elevated temperatures, Part 1: Ambient tests. Engineering Structures, v. 33, n. 10, p. 2727–2743, 2011. Available at: https://doi.org/10.1016/j.engstruct.2011.04.027