Biological aspects of feathers evolution an integrative revision
Main Article Content
Abstract
The tretapod teguments has undergone several modifications throughout the their evolution, which it includes living and extinct groups, and it is related to several adaptive advantages, as the case of feather, a morphological trait that is currently restricted to birds. This character is the result of the tegument evolution in reptile groups since the Triassic. In this sense, this literature review aimed to investigate publications on the origin of feathers, their possible morphologies and ancestral stages, their development in living birds, the adaptive impacts of feathers and which groups presented feathers or their possible precursor stages. The ancestral feathers possibly arised in the Avemetatarsalia group whose origin refers to the Triassic period and would be structures that would enable thermal insulation and thus maintain higher metabolic rates than other groups in a competitive environment. Although there is no fossil evidence tracing morphological changes in feathers since their origin, an evolutionary model is accepted leading totake into account the evolutionary novelties that feathers present during their development in a characteristic scenario of Evo-Devo.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
• The author (s) warrant that the contribution is original and unpublished and that it is not in the process of being evaluated in other journal (s);
• The journal is not responsible for the opinions, ideas and concepts issued in the texts, as they are the sole responsibility of the author (s);
• Publishers have the right to make textual adjustments and to adapt the article to the rules of publication.
Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License, which allows the sharing of work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg publish in institutional repository or as book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of the published work (See The Effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
References
ALCOCK, J. Comportamento animal: uma abordagem evolutiva. 9 ed. Porto Alegre: Artmed, 2011.
BENEDITO, E. Biologia e ecologia dos vertebrados. 1 ed. Rio de Janeiro: Roca, 2017.
BENTON, M. J. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research, 100, p. 261-289, 2021.
BENTON, M. J. A colourful view of the origin of dinosaur feathers. : Nature Publishing Group 2022.
BENTON, M. J.; DHOUAILLY, D.; JIANG, B.; MCNAMARA, M. The Early Origin of Feathers. Trends Ecol Evol, 34, n. 9, p. 856-869, 2019.
BIRKHEAD, T. R.; FIEBIG, J.; MONTGOMERIE, R.; SCHULZE-HAGEN, K. The Great Auk (Pinguinus impennis) had two brood patches, not one: confirmation and implications. Ibis, 164, n. 2, p. 494-504, 2022.
BRUSATTE, S. L.; O'CONNOR, J. K.; JARVIS, E. D. The origin and diversification of birds. Current Biology, 25, n. 19, p. R888-R898, 2015.
CALVERT, A. M.; ALISAUSKAS, R. T.; KELLETT, D. K. Fitness heterogeneity in adult Snow and Ross’s geese: Survival is higher in females with brood patches. The Auk, 136, n. 3, 2019.
CARNEY, R. M.; TISCHLINGER, H.; SHAWKEY, M. D. Evidence corroborates identity of isolated fossil feather as a wing covert of Archaeopteryx. Scientific Reports, 10, n. 1, p. 15593, 2020.
CHUONG, C.-M.; CHODANKAR, R.; WIDELITZ, R. B.; JIANG, T.-X. Evo-devo of feathers and scales: building complex epithelial appendages. Current opinion in genetics & development, 10, n. 4, p. 449, 2000.
CINCOTTA, A.; NICOLAÏ, M.; CAMPOS, H. B. N.; MCNAMARA, M.; D’ALBA, L.; SHAWKEY, M. D.; KISCHLAT, E.-E.; YANS, J.; CARLEER, R.; ESCUILLIÉ, F. Pterosaur melanosomes support signalling functions for early feathers. Nature, 604, n. 7907, p. 684-688, 2022.
DHOUAILLY, D. A new scenario for the evolutionary origin of hair, feather, and avian scales. Journal of anatomy, 214, n. 4, p. 587-606, 2009.
FLOR, T. O.; VINHOLI JR., A.J. S.; TRAJANO, V. S. Revisões de literatura como métodos de pesquisa: aproximações e divergências. Anais do VI CONAPESC... Campina Grande: Realize Editora, 2022.
FOTH, C. Introduction to the morphology, development, and ecology of feathers. In: The evolution of feathers: Springer, 2020. cap. 1, p. 1-11.
GAO, T.; YIN, X.; SHIH, C.; RASNITSYN, A. P.; XU, X.; CHEN, S.; WANG, C.; REN, D. New insects feeding on dinosaur feathers in mid-Cretaceous amber. Nature Communications, 10, n. 1, p. 5424, 2019.
GIL, A. C. Métodos e Técnicas de Pesquisa Social. São Paulo: Atlas, 2008.
GILBERT, S. F.; BARRESI, M. J. Biologia do desenvolvimento. Artmed Editora, 2019.
GILL, F. B. Ornithology. 3 ed. New York: W. H. Freeman and Company, 2007.
GODEFROIT, P.; SINITSA, S. M.; DHOUAILLY, D.; BOLOTSKY, Y. L.; SIZOV, A. V.; MCNAMARA, M. E.; BENTON, M. J.; SPAGNA, P. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science, 345, n. 6195, p. 451-455, 2014.
GRAVELEY, J. M. F.; BURGIO, K. R.; RUBEGA, M. Using a Thermal Camera to Measure Heat Loss Through Bird Feather Coats. J Vis Exp, n. 160, 2020.
GRIFFITHS, A. J.; WESSLER, S. R.; LEWONTIN, R. C.; GELBART, W. M.; SUZUKI, D. T.; MILLER, J. H. Introdução à genética. 11 ed. Rio de Janeiro: Guanabarra Koogan, 2016.
HARRIS, M. P.; FALLON, J. F.; PRUM, R. O. Shh‐Bmp2 signaling module and the evolutionary origin and diversification of feathers. Journal of Experimental Zoology, 294, n. 2, p. 160-176, 2002.
HICKMAN, C. P. J. Princípios Integrados de Zoologia. 16 ed. Rio de Janeiro: Guanabara Koogan, 2019.
HILDEBRAND, M.; GOSLOW, G. Análise da Estrutura dos Vertebrados. 2 ed. São Paulo: Atheneu, 2006.
HU, D.; HOU, L.; ZHANG, L.; XU, X. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature, 461, n. 7264, p. 640-643, 2009.
JASINSKI, S. E.; SULLIVAN, R. M.; DODSON, P. New Dromaeosaurid Dinosaur (Theropoda, Dromaeosauridae) from New Mexico and Biodiversity of Dromaeosaurids at the end of the Cretaceous. Scientific Reports, 10, n. 1, p. 5105, 2020.
JI, Q.; NORELL, M. A.; GAO, K.-Q.; JI, S.-A.; REN, D. The distribution of integumentary structures in a feathered dinosaur. Nature, 410, n. 6832, p. 1084-1088, 2001.
JOHN, T. M.; ITOH, S.; GEORGE, J. C. On the Role of the Pineal in Thermoregulation in the Pigeon. Hormone Research in Paediatrics, 9, n. 1, p. 41-56, 1978.
KARDONG, K. V. Vertebrados: anatomia comparada, função e evolução. 7 ed. Rio de Janeiro: Guanabara Koogan, 2016.
KAYE, T. G.; PITTMAN, M.; MAYR, G.; SCHWARZ, D.; XU, X. Detection of lost calamus challenges identity of isolated Archaeopteryx feather. Scientific Reports, 9, n. 1, p. 1182, 2019.
LIN, G.-W.; LI, A.; CHUONG, C.-M. Molecular and cellular mechanisms of feather development provide a basis for the diverse evolution of feather forms. In: The Evolution of Feathers: Springer, 2020. cap. 2, p. 13-26.
LOVEGROVE, B. G. A phenology of the evolution of endothermy in birds and mammals. Biological Reviews, 92, n. 2, p. 1213-1240, 2017.
LÜ, J.; BRUSATTE, S. L. A large, short-armed, winged dromaeosaurid (Dinosauria: Theropoda) from the Early Cretaceous of China and its implications for feather evolution. Scientific Reports, 5, n. 1, p. 1-11, 2015.
MARINI, M. Â.; AGUILAR, T. M.; ANDRADE, R. D.; LEITE, L. O.; ANCIÃES, M.; CARVALHO, C. E. A.; DUCA, C.; MALDONADO-COELHO, M.; SEBAIO, F.; GONÇALVES, J. Biologia da nidificação de aves do sudeste de Minas Gerais, Brasil. Revista Brasileira de Ornitologia, 15, n. 3, p. 367-376, 2007.
MARINI, M. Â.; DURÃES, R. Annual Patterns of Molt and Reproductive Activity of Passerines in South-Central Brazil. The Condor, 103, n. 4, p. 767-775, 2001.
MITCHELL, J. S.; MAKOVICKY, P. J. Low ecological disparity in Early Cretaceous birds. Proceedings of the Royal Society B: Biological Sciences, 281, n. 1787, 2014.
MOTA-ROJAS, D.; TITTO, C. G.; DE MIRA GERALDO, A.; MARTÍNEZ-BURNES, J.; GÓMEZ, J.; HERNÁNDEZ-ÁVALOS, I.; CASAS, A.; DOMÍNGUEZ, A.; JOSÉ, N.; BERTONI, A.; REYES, B.; PEREIRA, A. M. F. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals, 11, n. 12, 2021.
NORELL, M. A.; MAKOVICKY, P. J. Dromaeosauridae. In: The Dinosauria: Second Edition: University of California Press, 2004. cap. 10, p. 196-209.
OWEN, R. III. On the archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Royal Society, n. 153, p. 33-47, 1863.
POUGH, F. H.; HEISER, J. B.; MCFARLAND, W. N. A vida dos vertebrados. São Paulo: Atheneu, 2003.
PRUM, R. O. Development and evolutionary origin of feathers. Journal of Experimental Zoology, 285, n. 4, p. 291-306, 1999.
QIANG, J.; CURRIE, P. J.; NORELL, M. A.; SHU-AN, J. Two feathered dinosaurs from northeastern China. Nature, 393, n. 6687, p. 753-761, 1998.
REPENNING, M.; FONTANA, C. Seasonality of breeding, moult and fat deposition of birds in subtropical lowlands of southern Brazil. Emu - Austral Ornithology, 111, n. 3, p. 268-280, 2011.
SAWYER, R. H.; KNAPP, L. W. Avian skin development and the evolutionary origin of feathers. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 298, n. 1, p. 57-72, 2003.
SAWYER, R. H.; ROGERS, L.; WASHINGTON, L.; GLENN, T. C.; KNAPP, L. W. Evolutionary origin of the feather epidermis. Developmental dynamics: an official publication of the American Association of Anatomists, 232, n. 2, p. 256-267, 2005.
SCHMIDT-NIELSEN, K. Fisiologia animal: adaptação e meio ambiente. 5 ed. São Paulo: Santos Ed, 2018.
SHAHID, F.; ZHAO, J.-S.; PASCAL, G. Design of flying robots inspired by the evolution of avian flight. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, n. 23-24, p. 7669-7686, 2019.
SOUZA, M. T.; SILVA, M.D.; CARVALHO, R. Revisão integrativa: o que é e como fazer. Einstein, São Paulo. v.8, n.1 p.102-106, 2010.
STUART-FOX, D.; NEWTON, E.; CLUSELLA-TRULLAS, S. Thermal consequences of colour and near-infrared reflectance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, n. 1724, p. 20160345, 2017.
TURNER, A.; MAKOVICKY, P.; NORELL, M. Feather Quill Knobs in the Dinosaur Velociraptor. Science, 317, n. 5845, p. 1721, 2007.
WHITNEY, B. M. “Kleptoptily”: How the Fork-tailed Palm-Swift Feathers Its Nest. The Auk, 124, n. 2, p. 712-715, 2007.
XU, X.; ZHOU, Z.-h.; PRUM, R. O. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature, 410, n. 6825, p. 200-204, 2001.
YANG, Z.; JIANG, B.; MCNAMARA, M. E.; KEARNS, S. L.; PITTMAN, M.; KAYE, T. G.; ORR, P. J.; XU, X.; BENTON, M. J. Pterosaur integumentary structures with complex feather-like branching. Nature Ecology & Evolution, 3, n. 1, p. 24-30, 2019.
ZHENG, X.-T.; YOU, H.-L.; XU, X.; DONG, Z.-M. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature, 458, n. 7236, p. 333-336, 2009.